For the environmentally-friendly synthesis of polymers with defined sequences, we can take inspiration from microbes, which have synthesized sequence-controlled polymers in the form of proteins, polysaccharides, and nucleic acids for millions of years.Â
Microbial engineering involves the manipulation of microbes to develop new uses for them. Chemical engineering plays a pivotal role in the delivery of biological discovery and innovation for the benefit of society. In particular, microorganisms have become an increasingly important platform for the production of chemicals, drugs, and biofuels from renewable resources. Historically, plastics (polymers) were developed to minimize cost, maximize durability, and optimize performance rather than recyclability and reuse potential. Meanwhile, conventional polymerizations often rely on organic solvents and heavy metal catalysts that are contrary to sustainability goals. Our failure to address these issues in the inherent design of plastics combined with our global dependence on them has caused severe pollution and accelerated the depletion of natural resources. The combination of microbial and chemical engineering offers a promising approach to improve the polymer industry and enable the development of greener plastics. This way, we can work towards a more sustainable and circular polymer ecosystem.